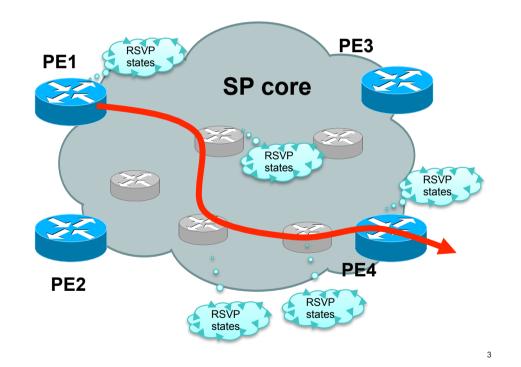
#### ıılıılıı cısco

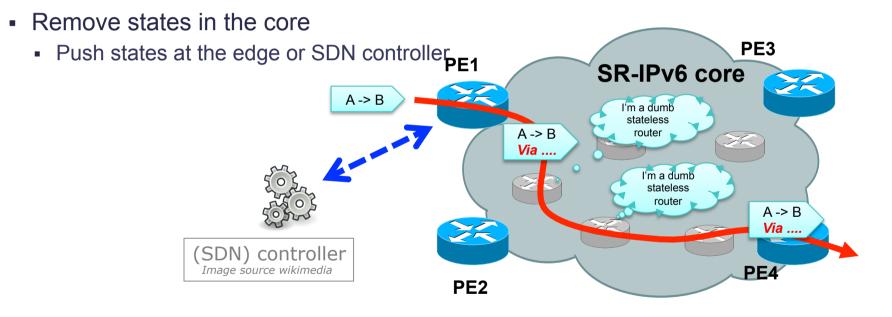
# Segment Routing Header (SRH)

Eric Vyncke (evyncke@cisco.com) Distinguished Engineer – Cisco Systems


June, 2014

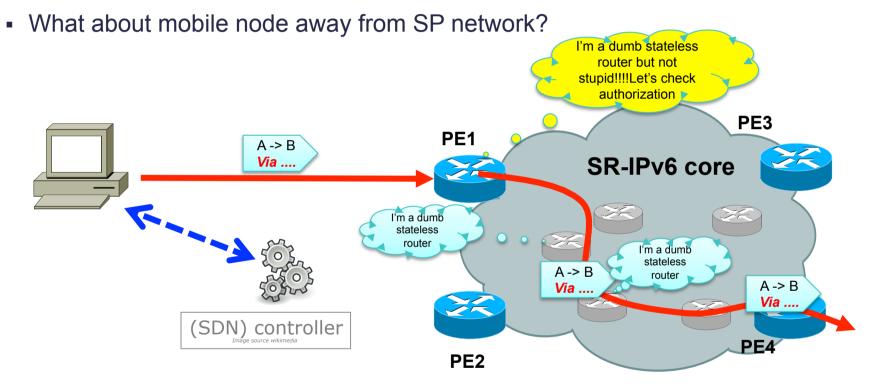
#### Where is the Internet?




## Where is Traffic Engineering (TE)?

- TE requires RSVP to install states in every the core routers
  - => 'low' convergence
  - => TE not widely deployed




## What Can We Do for Efficient/Flexible TE?

- Leverage IPv6 flexibility
  - Overload routing header, i.e. install states in the data packet



4

#### "Extreme Traffic Engineering" from CPE/Set-up Box?



## **Segment Routing in a Nutshell**

- Segment Routing:
  - Source based routing model where the source chooses a path and encodes it in the packet header as an ordered list of segments
    - > Removes routing states from any node other than the source
  - A segment is an instruction applied to the packet.
  - Segment Routing leverages the source routing architecture defined in RFC2460 for IPv6

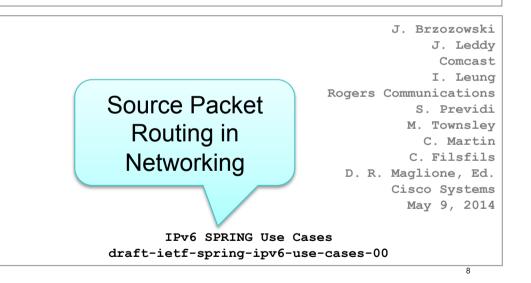


Source: wikimedia

## Segment Routing and the Source Based Routing Model

- Segment Routing technology is extensively explained in
  - <u>http://www.segment-routing.net</u> (includes all published IETF drafts)
- Segment Routing data-planes
  - SR-MPLS: segment routing applied to MPLS data-plane
  - SR-IPv6: segment routing applied to IPv6
- SR-IPv6 allows Segment Routing do be deployed over non-MPLS networks and/ or in areas of the network where MPLS is not present (e.g.: datacenters)

7

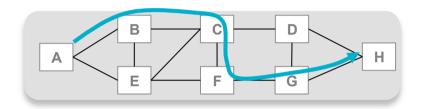

- Segment Routing backward compatibility
  - SR nodes fully interoperate with non-SR nodes
  - No need to have a full network upgrade

#### **Segment Routing Header**

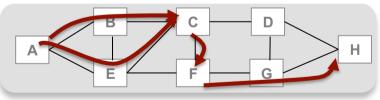
- Segment Routing introduces a new Routing Header Type:
  - The Segment Routing Header (SRH)
  - Contains the list of segments the packet should traverse
  - VERY close to what already specified in RFC2460
  - Changes are introduced for:
    - > Better flexibility
    - > Addressing security concerns raised by RFC5095
- Two SR-IPv6 drafts:
  - draft-previdi-6man-segment-routing-header
  - draft-ietf-spring-ipv6-use-cases

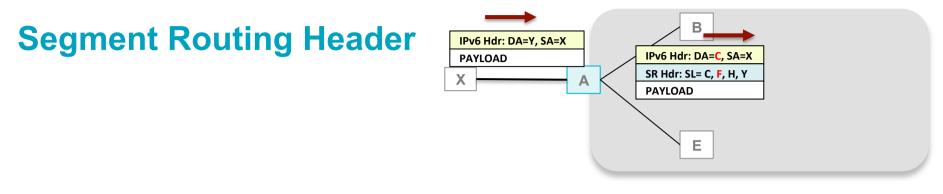
S. Previdi, Ed. C. Filsfils Cisco Systems, Inc. B. Field Comcast I. Leung Rogers Communications June 9, 2014

#### IPv6 Segment Routing Header (SRH) draft-previdi-6man-segment-routing-header-01




### **Segment Routing Model**


- How to express an explicit (source routed) path knowing that:
  - Nodes may represent routers, hosts, servers, application instances, services, chains of services, etc.
  - A path is encoded into the packet by the originator (or ingress) node
  - A path may be modified by a node within the path
  - The network may have plurality of nodes not all supporting Segment Routing


#### **Segment Routing Model**

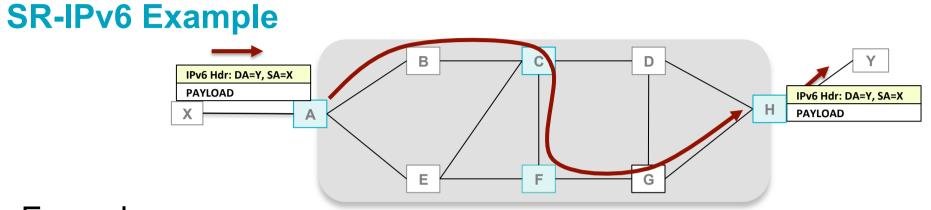
- Assuming following topology:
  - Node A has two shortest paths to C



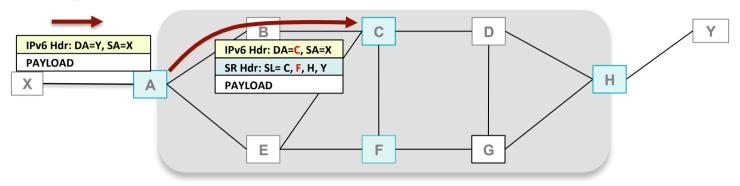
- How to best express path: [A, B, C, F, G, H]
- Source rooted path with segments: [C,F,H]
  - > First segment: set of shortest paths from A to C (ECMP aware)
  - >Second segment: adjacency/link from C to F
  - >Third segment: shortest path from F to H



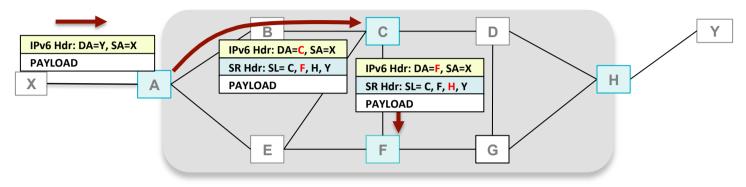



- At ingress:
  - Path is computed or received by a controller (e.g.: SDN Controller)
  - Path is instantiated through a list of segments
  - A SRH is created with the segment list representing the path

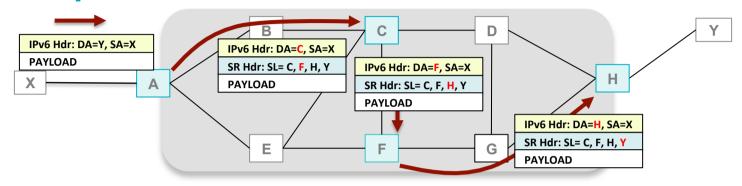
#### **Segment Routing Header**


- Segment Routing Header:
  - Segment List describes the path of the packet: list of segments (IPv6 addresses)
  - **Next Segment**: a pointer to the segment list element identifying the next segment
  - HMAC
  - Flags and optional policy information
- The Active Segment is set as the Destination Address (DA) of the packet
  - At each segment endpoint, the DA is updated with the "Next Segment"
  - Compliant with RFC2460 rules for the Routing Header
    - > Request to IANA to allocate a new type (probably 4)

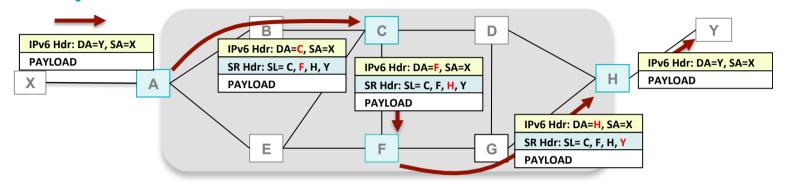
#### **Segment Routing Header**


| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-                 |
|--------------------------------------------------------|
| Last Segment   Flags   HMAC Key ID   Policy List Flags |
| Segment List[0] (128 bits ipv6 address)                |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-               |
|                                                        |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-               |
| Segment List[n] (128 bits ipv6 address)                |
|                                                        |
| Policy List[0] (128 bits ipv6 address)<br>(optional)   |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-               |
| Policy List[1] (128 bits ipv6 address)<br>(optional)   |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-               |
| Policy List[2] (128 bits ipv6 address)<br>(optional)   |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-               |
| HMAC (256 bits)<br>(optional)                          |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-               |




- Example:
  - Classify packets coming from X and destined to Y and forward them across A,B,C,F,G,H path
  - Nodes A, C, F and H are SR capable



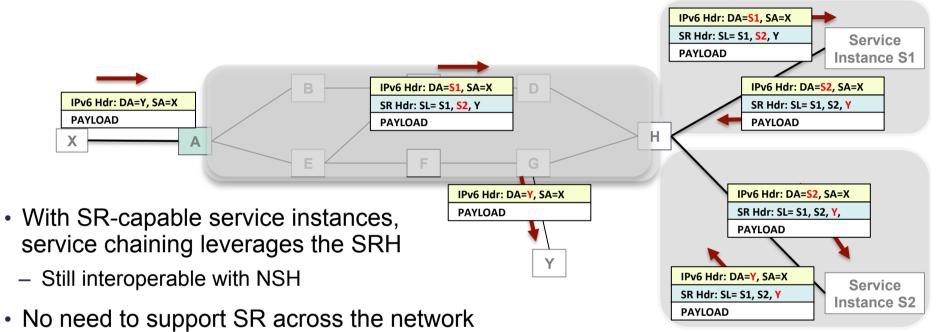

- At ingress, the Segment Routing Header (SRH) contains
  - Segment List: C,F,H,Y (original destination address is encoded as last segment of the path)
  - Next Segment: points to the next segment of the path (F)
  - **DA** is set as the address of the first segment: C
- Packet is sent towards its DA (C, representing the first segment)
  - Packet can travel across non SR nodes who will just ignore the SRH
  - RFC2460 mandates only the node in the DA must examine the SRH



- When packet reaches the segment endpoint C
  - Next Segment is inspected and used in order to update the DA with the next segment address: F
  - Next Segment pointer is incremented: now points to H
  - Packet is sent towards its DA



- When packet reaches the segment endpoint F the same process is executed:
  - Next Segment is inspected and used in order to update the DA with the next segment address: H
  - Next Segment pointer is incremented: now points to Y (the original DA)
  - Packet is sent towards its DA

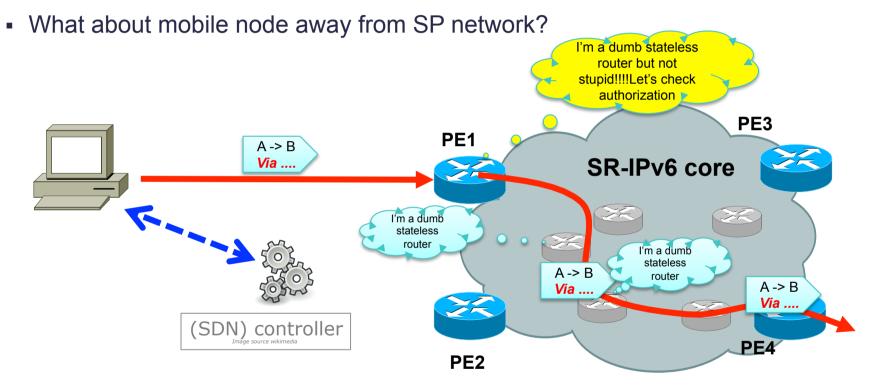



- When packet reaches the segment endpoint H:
  - Next Segment is inspected and used in order to update the DA with the next segment address: Y
  - A flag (cleanup-flag) in SRH tells H to cleanup the packet and remove the SRH
  - Packet is sent towards its DA

#### **Segment Routing Use Cases: Fast Reroute**

- Fast Reroute (FRR)
  - Upon failure, the protecting node reroute traffic according to new Segment List
  - Backup path Segment List is pre-computed and pre-instantiated
  - Upon failure, the backup Segment List is inserted

#### **Use Cases: SR-IPv6 Capable Service Chaining**

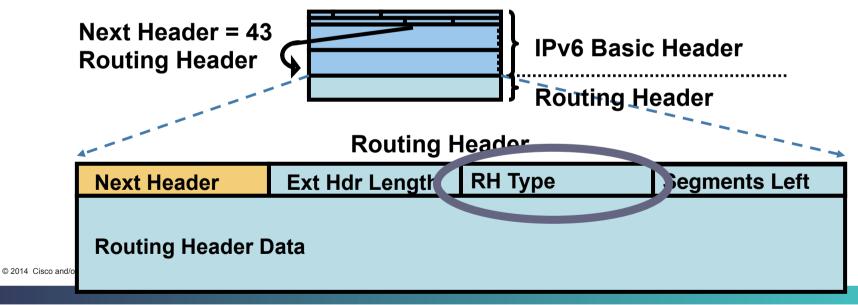



- Transparent to network infrastructure
- Next Step: allow SR service chaining with non-SR applications...
  - Work in progress

#### Segment Routing Use Cases: Application driven traffic steering

- Impose source-routing semantics within an application or at the edge of a network (for example, a CPE or home gateway)
- CPE gets the SRH from a controller and impose it to outgoing traffic
- SRH includes HMAC that is going to be validated at ingress only

#### "Extreme Traffic Engineering" from CPE/Set-up Box?




# Huh??? Source Routing Security? What about RFC 5095?



#### **IPv6 Routing Header**

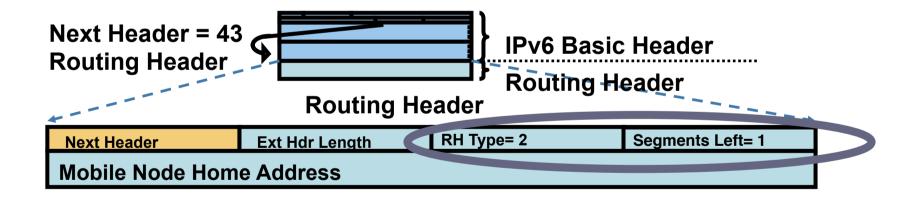
- An extension header, processed by intermediate routers
- Three types
  - Type 0: similar to IPv4 source routing (multiple intermediate routers)
  - Type 2: used for mobile IPv6
  - Type 3: RPL (Routing Protocol for Low-Power and Lossy Networks)



24

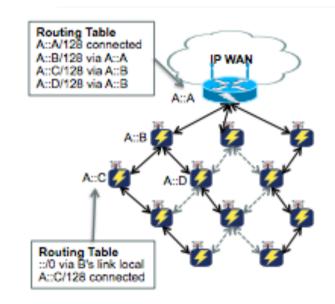
#### **Type 0 Routing Header: Amplification Attack**

Α


- What if attacker sends a packet with RH containing
- A -> B -> A ....
- Packet will loop multiple time on the link A-B
- An amplification attack!

© 2014 Cisco and/or its affiliates. All rights reserved.

Β


#### IPv6 Type 2 Routing Header: no problem

- Rebound/amplification attacks impossible
  - Only one intermediate router: the mobile node home address



#### RH-3 for RPL: no problem

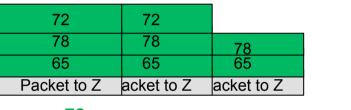
- Used by Routing Protocol for Low-Power and Lossy Networks
- But only within a single trusted network (strong authentication of node), never over a public untrusted network
  - Damage is limited to this RPL network
  - If attacker was inside the RPL network, then he/she could do more damage anyway

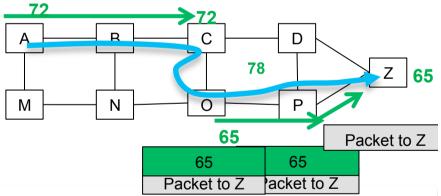


#### **Segment Routing Security**

- Addresses concerns of RFC5095
  - HMAC field to be used at ingress of a SR domain in order to validate/authorize the SRH
  - Inside SR domain, each node trust its brothers (RPL model)
- HMAC requires a shared secret (SDN & SR ingress routers)
  - Outside of current discussions
  - Pretty much similar to BGP session security or OSPFv3 security

#### SRv6 packets dropped on the Internet


- RFC 5095 deprecates source routing
  - RH-0 only
  - Forwarding based on DA is not prevented even in presence of RH
- Some tests with scapy shows RH-4 (assuming IANA value of 4) => packets are not dropped
- Test on your own: <u>http://www.vyncke.org/sr.php</u>
  - And let us know !


# Segment Routing for MPLS

draft-filsfils-spring-segment-routing-mpls

## **Combining Segments**

- ECMP
  - Node segment
- Per-flow state only at headend
  - not at midpoints
- Source Routing
  - the path state is in the packet header







Source: wikimedia

# Wrapping Up

#### Summary

- Segment Routing implements the source routing model for both MPLS and IPv6
- IPv6 source routing model is already integrated in RC2460 and Segment Routing introduces minor changes through a new routing type header
  - Segment Routing Header
- Segment Routing is very flexible and interoperable with non-SR nodes
- A SR node can be a router, a server, any appliance, application, ...
- Segments are identified by IPv6 addresses, no specific signaling is needed

## Conclusion

- Standardization of Segment Routing is in progress at IETF
  More than 17 drafts
- Running code exists
- Next Step: Segment Routing for Service Chaining
  - More flexible, interoperable with existing applications
- Collaboration with operator on going and very fruitful
  - Join the team !
- Pointers:

http://www.segment-routing.net

mailto:ask-segment-routing@cisco.com

# Thank you.

#